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ABSTRACT

Neglecting magnetic effects the precession of the mantle of the Earth

is responsible for hydrodynamic motions in the liquid core because, (1) the

velocity of the inner boundary of the mantle along its normal is non-zero unless

the core boundary is a perfect sphere, (ii) there is a viscous coupling between

core and mantle, (iii) there is a magnetic coupling between core and mantle

because lines of geomagnetic force thread each. In this preliminary discussion

of the problem, we suppose that the core boundary is an oblate spheroid of

eccentricity e; it is shown that the relative importance of (i) and (ii)

depends in an essential way on the value of R we /0 where w is

the angular velocity of rotation and Q ( c w) is the angular velocity of

precession. Since R is almost certainly large for the Earth, the present

discussion is limited to this case.

The motion of the fluid is found by considering an initial value

problem in which the axis of rotation of the spheroid is impulsively moved

at time t = 0 ; before that time this axis is supposed to be fixed in space,

the fluid and envelope turning about it as a solid body. The solution is

divided into a steady motion and transients, and, by evaluating the effects

of the viscous boundary layer, the transients are shown to decay with time.

The steady motion which remains is a circulation with constant vorticity in

planes perpendicular to w and Q, the streamlines being similar and

similarly situated ellipses.
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1. INTRODUCTION

Some years ago, Bondi and Lyttleton (1) examined the motion of a

liquid in a spherical cavity of a rigid body which was rotating with an angular

velocity X about an axis through the centre of the sphere when this axis, in

turn, was processing with angular velocity 2(0( << w) about an axis fixed in

space. The aim of their investigation was to throw some light on the effect of

the precession of the Earth on the motion of the liquid core. The analytical

approach used by Bondi and Lyttleton was to suppose that the fluid is

Newtonian and practically inviscid. Then, in the first approximation,

viscosity was neglected, and it was hoped to correct for viscosity by a thin

boundary layer near the surface of the cavity. Unfortunately, on attempting to

solve the steady inviscid equations, they arrived at a definite contradiction
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which strongly suggested to them that no steady state motion of a permanent

character is possible for the fluid.

The spherical cavity presents a special difficulty In the theory of

rotating fluids because without viscosity no motion can be Communicated to

the fluid by a rotation of the boundary. The angular velocity acquired by the

fluid, even if the sphere is not processing, Is due entirely to the generation of

vorticity in the boundary layer at the surface of the cavity and one might expect

it to take a time O(a2/v) , where a Is the radius of the cavity and v the

kinematic viscosity, for the motion of the fluid and sphere to rotate together as

a rigid body. Lot us suppose this time has passed, that the processing motion

is set up at t = 0, and that subsequently the fluid may be regarded as inviscid.

Then while the solid body processes the fluid rotates about a fixed axis, being

unaffected by the motion of its envelope. The motion of the fluid is actually

steady but relative to the envelope it appears to be unsteady, its axis of

rotation processing with angular velocity -, and, when Ot is small,

this means that the velocity perturbations are proportional to Ot . Thus the

contradiction obtained by Bondi and Lyttleton does not necessarily mean that

the motion of the fluid Is not ultimately steady. For a real fluid, one might

expect that the motion described above would occur if Qa /v >> I , and if,

2
on the other hand, 0aav << I , the motion of the fluid and envelope would

be virtually a rigid body precession.

This discussion strongly supports their view that the determination of the

motion is likely to prove a problem of great difficulty, and consequently we

thought it desirable to begin our attack by studying the related problem of the
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oblate spheroidal envelope which includes the sphere as a special case but

proves easier because the motion of the boundary of the cavity must communicate

itself in part to the fluid. This problem is not without interest in the geophysical

context with which Bondi and Lyttleton were concerned because, although one

can say that the core of the Earth is nearly a sphere in that

a 2 .b 2

a

where a and b are the semi-major and minor axes of the core, one cannot be

sure of the values of

R 2 -b 2 )w R 2 Ga2

1 2 ' 2- • '

a 2

which, with R3 = a 2/v ( >> 1), control the motion of the fluid in the core

relative to the rigid body rotation. If R1 = 0, the motion is critically
S

* dependent on R 2 while if R is large the motion is independent of R 2

except, possibly, if R1 R2 I . Our investigation here is based on the

assumptions that RI >> 1, R 1 R2 >> I ; it is hoped to explore other limiting

situations in a later paper. These assumptions are not unreasonable in the

geophysical context since, for the surface of the Earth, (a - b 2)/a 2 1/300,

and the value of this parameter for the core is not likely to be an order of

magnitude less. Further, w/D - 5.10 6, and v is almost certainly much

less than 108 cm 2/sec. However, it should not be forgotten that our results
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2 2 2
are extremely sensitive to (a - b )/a when a m b It may also be

appropriate to remark that, as a geophysical model, our present approach

* involves a gross oversimplification of the dynamics of the core since it

excludes magnetic forces, and these are likely to be the most potent agency

in coupling core and mantle (cf., e.g., Bullard, 2). Of course, a realistic

model including magnetic forces would be immensely complicated (although,

in its favour, it should be mentioned that the case a a b would no longer

be singular! ). Nevertheless, we believe our simple model has some bearing

on the generation of the geomagnetic field. It has long been known (2) that

the only processes which are energetically capable of generating the geomagnetic

field by dynamo action are thermal convection and precession. Bullard (2),

while himself favouring the former of these mechanisms, was unable to rule

out the latter. Indeed, the subsequent suggestion (1) that turbulence might

be generated by the precessional effects near the singularities of the boundary

layer at latitudes 30* N and 30* S made it seem (3) not unlikely that pre-

cessional motion played an important part in the geomagnetic dynamo. However,

turbulence was invoked by Bondi and Lyttleton as a motion which the fluid would

be likely to adopt in the absence of a permanent steady-state flow. In our model,

on the other hand, a steady state flow does exist, and turbulence could arise only

if it Is unstable (see below). If we exclude this possibility, it Is clear that,

even though in our model the order of magnitude of the precessional motions

( - 1 cm. /sec. near the core boundary) should suffice to make their inductive

effects felt, their structure is far too simple, In regard to the restrictions imposed

by Cowling's theorem (4), to maintain dynamo action. Other motions would be
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required to complete the regenerative cycle. In principle, even a simple

differential rotation about the axis of p might suffice (5), and It may be

worth noting that such motions might arise if RI << 1 in the core.

Even for an oblate spheroidal cavity containing almost Inviscid fluid

the determination of the flow has some unusual features. Thus the governing

equations for an inviscid fluid are hyperbolic while the boundary condition is

a relation between the function and its normal derivative. Such a boundary

condition is appropriate to an elliptic differential equation and there are no

corresponding existence and uniqueness theorems for hyperbolic equations.

In fact one can construct examples of non-existence and non-uniqueness as

follows.

Suppose that the governing equation is

2 2 # .
ex 2 y

andthat (a) =0 on the clrcle x a+y2 =, or (b) *0 on three sides

of the square lxi x<1, iyl 1 and I=i on the fourth side. One solution

of (a) is

*=A(x 2y+ y-)

Inside the circle, where A is arbitrary. This solution can be added to any

other, so that there is no unique solution of (1. 1) in this case. Again every

solution of (1. 1) which vanishes on three sides of a square must vanish on
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the fourth side so that the solution of problem (b) cannot exist.

Fortunately In the present problem there Is a simple physical explanation

of these phenomena. The non-uniqueness is associated with the existence of

free oscillatory motions of the fluid In which the boundary remains fixed and

the non-existence Is associated with the resonance which can occur when the

boundary Is made to oscillate with the same period as that of one of the free

oscillations of the fluid.

The difficulty about the inappropriate type of boundary condition is

removed by considering motions which start from a position of relative rest.

We suppose that the fluid and envelope are initially rotating as if solid with

angular velocity , and that at time t = 0 the envelope is set processing with

angular velocity B. The equations governing the induced motion of the fluid

are unsteady but the time dependence is removed on applying a Laplace trans-

formation with parameter s and the equation is reduced to a single one of

Laplace's form apart from a scaling factor which Is a function of s . A general

solution can be written down and, on inversion, the history of the motion can be

traced. From an examination of the solution at large times we can relate the non-

uniqueness to free oscillations set up by the initial motion and the non-existence

to resonance.

For a spheroid the actual inviscid solution Is straightforward being

effectively given by Hough and by Poincar6 (6), the difficulty found by Br ._

and Lyttleton for a a b Is seen to be a resonance and explicable on the .

stated in physical terms at the beginning of this section.
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In 54 the boundary layer due to this motion Is investigated. The

nviasold motion outside consists of two parts (1) dependent on the azimuth

angle 0 and duo to the steady motion of the boundary, (11) independent of

9 and duo to the angular velocity which the boundary acquired Initially but

failed to communicate Immediately to the fluid. The boundary layer associated

with (1) was studied by Bondi and Lyttleton but we repeat their investigation

here since we are including time as a parameter. It develops a singularity on

certain circles of latitude as s approaches any value on the imaginary axis

between -31 and I . The boundary layer associated with (ii) has also

boon studied earlier by Stewartson (7) and Proudman (8), and it develops

singularities as s approaches any value on the imaginary axis between * Z 1.

Bondi and Lyttleton (1) noticed that the normal velocity on the critical

circle becomes infinite in the limit and suggested that the flow near it was

unstable leading to turbulence here and elsewhere. Although one cannot be

sure without carrying out an actual experiment, more recent investigations

do not support this view. The singularity on a critical line is a singularity

in the boundary layer sense, I. e., if v n is the normal velocity just outside

the boundary layer, the equations imply that vn = O(v ) almost everywhere

and on approaching the critical line I'*v n•. o. This does not necessarily
n

mean that vn -• o and indeed, in a related problem (9), a more detailed

investigation of the flow properties near the critical line implied v n O(v)

which is still small in the limit v -. 0. Further a detailed solution of a

related problem to (U) by Stewartson (10) elucidates the role of the
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critical circles as the origin of &hear layers which penetrate into the fluid,

transporting fluid from one part of the boundary to another via the interior

and also adjusting the angular velocity of the main body of fluid when

required. Free shea layers are certainly notoriously prone to istability;

however, after Proudman (8) had postulated their existence in a discussion

of the flow between two concentric spheres, experiments carried out to toot

his conclusions did not, In all cases, reveal Instability. It was found (U)

that, if the angular velocity of the Inner sphere exceeded that of the outer

sphere, the shear layer was rapidly destroyed by Taylor-Gortle instabilities

and by the formation of Kirmnn vortex sheets at the layer. If however, the

outer sphere rotated more rapidly than the inner sphere, the shear layer showed

scarcely any tendency to Instability.

In I5 and 16 the (tertiary) modification to the secondary flow

induced by these boundary layers is discussed with particular reference to

the oscillations produced by the initial motion of the envelope. It is shown

that, of the motions dependent on 0, oniy the steady motion survives as

t - go. The effect of the boundary layer independent of 0 is to lead to a

breakdown in the tertiary flow as t - o, and it is argued that this must

mean that, relative to the boundary, the motion independent of 0 must die

out as t . 0 due to the communication of vorticity to the fluid via the

boundary layer.

I
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2. EQUATIONS OF UNSTEADY MOTION

We consider a mass of incompressible fluid which occupies the whole

of a rigid envelope whose internal boundary, So , is a surface of revolution

with axis of symmetry LB . Initially the fluid and the envelope are rotating

about the axis with angular velocity e which in an absolute constant. At

time t = 0, the axis L8 is set rotating with a small uniform angular velocity

Sabout an axis L8 fixed in space which intersects LB at a point 0, and

which is inclined at an angle a to it. For definiteness, we shall suppose that

the perturbed motion is started impulsively so that a is also an absolute

constant. We wish to find the subsequent motion of the fluid.

Consider a reference frame, • , rotating with angular velocity

relative to which LB and L 8 are stationary, and let the velocity of the

fluid relative to 7 be

•=£+£ X. .(2.1)

At t=O-, X=0, andat t=O+, A&00 in virtue of the Impulsive motion

of 80 , but it will be determinate from the initial motion of So. The actual

velocity, X, of the fluid, relative to axes fixed in space and instantaneously

coinciding with F , is

;X=X+Y.)(2.2)
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We know that, at t a 0+, AL + A X, is irrotational and uniquely determinate

from the motion of S0 and hence is also known at t a 0+. The equations

Of motion relative to are

V~ + X+(X rd, gd (L 3)

divX =0 (Z.4)

where p is the pressure, p the density, v the kinematic viscosity, and

W the potential per unit mass of the external forces, supposed conservative,

which act on the fluid. We now express ( 2. 3) in terms of ,•., obtaining

+ 2(y, + Q)x X• - (X + xZ.) x curl A

=-;;rad W+ + 2

P 2 Z

+ A&. ( W x ' ) + -L A

whence, on neglecting squares and products of )L and , , we find

;#+ ~X X)L- (jX X) Xcurl• ALa-wgrad V,+ vv~• V(••j (L. S)

where

2 2 (. 6)
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This equation differs from that given by Bondi and Lyttleton (1), viz.

+ +Z•XXAL- (p, XZXcurl• A "-wgrad V +v - (Y)• V (2.7)

where

S-w+ + 1 2 - (jx ) a + 2(• .)(, ,) - es(j. ,)r2

The first term in ( 2. 7) in brackets was omitted by Bondi and Lyttleton

because they assumed that the motion is steady. So far as the motion of the

fluid is concerned, the only significant difference between (2. 5) and ( 2. 7)

is the factor 2 in the last term of ( 2. 5) . We shall show (53) that this

factor is crucial for obtaining a consistent solution of the problem when 8

Is a sphere. The equation of continuity (2. 4) is equivalent to

div,,=o . (2.8)

Now choose a system of cylindrical polar coordinates (r, 0, z) In

with L. as the z-axis, r measuring the distance of a typical point

P(.Z) from LB, and 0 being the angle between the plane defined by P and

LB and the plane defined by LS and LB . Then

.), =(O, 0, -Oowzcosa- flwrsina cos 0) , (2.9)

where 01 = - I l is the (retrograde) angular velocity of precession.
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To begin with, neglect viscosity, and denote the velocity by 40

with component. (uorp, Uoe, Uor ) respectively along the directions of

r, 0 and a increasing; (2.5) and (2. 8) rethenequivalentto

eu au
o+ Wor - .* 8V"

at e0 or rWOe

(Z. 10)

8Ou SuO2 ei
0:~o S V"

1. + w- - - 7- + ZwOr sin a cos e,

t 80~ 8~z:0,

1 8 1 u* u0ralror) +rS0 + 8Z 0

where

V"1 V'-Oz Zcos a-ru

The boundary conditions require that the normal component of the fluid velocity

is zero on S0 , and also that, at t = 0+ , + ,Q is irrotational with

velocity potential '(say).
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In order to solve ( 2.10) It Is convenient to take the Laplace transform

of the dependent variables with respect to time,donoting the result by a star,

e. g.,

oo

.* (, ,=,, .- =t
u(r 0, zi s) f a' U or(r, 0, z, t)dt . (2.11)

0

The governing equations then reduce to

+ Uor" ZU ZV" 1-•+ ~l
3-C-(u( s) 2urZu, or +;( )n

aUo + 2Uo 11 1---i l* + I(u , (2.12)
(a+s) u 2 11 l( aoo i

+ U) OO• i)• O z rcosI w

where the suffix I denotes initial conditions. Since, at t = 0+,

X, + QXL is derivable from the potential *+, equations (2.12)

may be simplified, on writing

V * =+V" - * +- rz sin a sin (2. 13)

to
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(A- + 8) -*O "
Uor"zUor Or

(A u) *+ ZUOr Ove+ -0 roo. s (. 14)

+ a Uoz --- +za rsina(cos 9+ &sinO9)

and the equation of continuity to

1 8 . e 1 8U0 e 8U0 z
I-a-(ruor) + I -8 + 8*-z = 0 . (2.15)

A further simplification is obtained by writing

* •Oz O * Orcos a + oiU or= (U0 5  )' 09 we +Uoe

(2.16)

"Uo (U0"aI , V, + e,.(Vele)

where Uor, U0*, U0z, and V are independent of 0. On substituting into

(2.14) and (2.15), we obtain
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UOr (s+1)2+4 [r

S. zi8+ (s+i) (2.17)
2(s+4) 2+7 r

- ZOsin a 1 87V
U- =- r--(asw (8+1) 8z

where V satisfies

18 8 V + ((+i)Z+4]I• (r!V.) -2+= z s
r (s+i)0 az

If S0 is given by f(r, z) = 1, the boundary condition to be satisfied is

- Of - Of
UOr -r +Uoz R 0 at f 1 (2.19)Irr O~
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3. THE SECONDAR INVISCID FLOW FOR A 8PHEROID

The problem posed by equations (Z. 17) to (2.19) can be reduced to a
solution of Laplace's equation on writing ((+.1)2 + 4]/(s$+) 2  2 d

replaoing z by 4z. We can expect, therefore, that it can always be solved

for the boundary condition (2. 19), which Is equivalent to a linear relation

between V, its normal derivative, and possibly also its tangential derivative.

Having obtained the solution, the ultimate flow may be found by letting

s - 0, and taking note of the poles and branch points In the solution in

the half plane C (s) > 0.

In this paper we are particularly concerned with the properties of the

solution when the envelope S0 is the oblate spheroid

2 2
r-+z =1, (a> b) (3.1)
a Jb

of which Bondi and Lyttleton considered the special case a a b. For the

boundary (3.1), (2.19) becomes

r -- a --

-u~r ÷-u a (3.2)
a b2 0

and the appropriate solution of ( 2. 18) is found by writing

V =Arz , (3.3)
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where A is independent of r and z. Substituting into (2.1?) we have

- Az - iAz - IA 2iOr sin (34)
UOr :(s-i) ' 0e (s -i) UOz (s+i)- • "3.s

Hence, from (3.2),

A 21fla 2 sin a (s +1) (3.5)
Ws[ a 2 (s-i) +b 2 (s+i)]

Inverting the solution with respect to s, and using (2. 16), we have

"u 2.za2 sina (sin- e sin (6 + wkt)], (3.6)
0r (a-_b ) (a +b )

2zrb2 sin a 2a 2

"2 2 [sin 0 2 2 sin( B + wkt)] , (3.8)(a -b) (a +b)

where

a2+b2

According to (3. 6) to ( 3. 8), the secondary motion of the fluid

consists of two parts: one is essentially due to the initial motion of the

boundaries; the other is steady. The first part can itself be divided into



S-18- #374

* two components. One is rigid body rotation of angular velocity 0 cos a

about LB which the rotation of the boundary failed to communicate to the

fluid. The other is a free oscillation of the fluid. The steady part of the

motion consists of the rigid body rotation w (cf. eq. [ 2. 1]), and a

circulation (given by the terms in sin 0, cos 0 and sin 0 in [3. 6],

[ 3. 7] and [ 3. 8], respectively) In planes perpendicular to LS the

streamlines being similar and similarly situated ellipses. The vorticity

of this circulation is constant, and equal to

-z osin a (a2  +b )

(a2 _ b2

In the case of a sphere a = b, the relevant periods of free oscillation

of the fluid are infinite, so that a resonance develops and

uOr =-Oz sin a(sin 0 + wt cos 0),

u =1z sin a(cos 0 + At sin a) + Qr cos , (3.9)00

uz =O r sin a(sin 0 + wt cos 0)

or, in vector notation,

Ie x', - t(0 x ) x (3.10)
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Tbe physical interpretation of this result is that, as one expects, the motion

of a spherical boundary exerts no influence on the motion of the fluid and

hence, relative to the frame , the axis of rotation of the fluid rotates

with angular velocity - about L 8 . Consequently, after time t( Ot << 1),

the flu;d rotmes about an axis making an angle of

1*I I
with LB , and this Is indicated by (3.10). It Is noted that, on substituting

(3.10) into (2. 7), the equations of motion are satisfied identically, and so

any change in the motion of the fluid must be initiated through a boundary

layer arising from the non-satisfaction of the requirement that ,Q, = 0 on the

boundary So0 Had the equation (2. 7) required by Bondi and Lyttleton boon
1

used, t would be replaced by • t in (3. 10), and the new formula for

would not be consistent with this physical argument.



-20- #374

4. THE BOUNDA LAYER

The inviscid solution obtained in the previous section satisfies not

only the inviscid equations but also the viscous equations (2. 5). Viscosity

therefore manifests Itself only through the fact that this solution does not

satisfy the viscous boundary condition L, a 0 on the spheroidal envelope

so , and leads to a boundary layer whose thickness we can anticipate to

be 0(vi) If v Is small where the adjustments in the tangential components

of velocity are made. We shall calculate this boundary layer in the present

section and its effect on the inviscid flow in the interior will be discussed

in the following sections.

Let us write

A&. AO + X, (4.1)

where A& is defined by (2.1), ) i0 In its value if v =0, and
I

X'1 is the correction due to viscosity. Then, to order v I X1

is the contribution from the boundary layer to X. introduce spheroidal

polar coordinates (Xl, I&lp 6), where X I and IL, are defined by

r I(,x+ c)- ) I , -I& (4.2)

2 2 2
C =a . b and the spheroid 80 is given by XI •b. Then, using (3.6) to

I
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(3.8), we see that the boundary condition j = 0 requires that, at

)I =b,

U =0
1

u = 20ab sin a [sinG- 2 2 sin(O + wkt)](b +R2 c )2 (4.3)
U1 (a-2 b)2 (a 2+b2 )

S2
. Za 2b sin ao 2a2 1

2b 2 [Cos ( 2 2 cos(e + wkt)]•L -Oa cosa(l -A)aue= (az-bz) (a+bz)

Beyond the boundary layer, when (b - X1)VI is large and positive, = o(l);

we shall then be particularly interested in ulIx which is O(Jv) and, unlikeI/

the other components of velocity, is not exponentially small. Consequently

it engenders a tertiary flow through the interior of So * From the boundary

condition (4. 3) the flow in the boundary layer may be divided into two parts

one of which (,X 2 ) is dependent on 0, and one which (,e3) is independent

of 0. We consider the part dependent on 0 first.

Write the Laplace transform of ýL2 with respect to ox as

,ie ,(4.4)

and in the boundary layer make the convenmional assumption tim tim operu.or
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8/081 .O(v ) while e/I8, and 8/80 are 0(1). Then an Is usual with

BSknan flows, in the governing equations S and 1Ll may be taken constant.

k 1 may be replaced by b except when it appears in 0/ 8. The governing

equations reduce to

2-
-pl 2 8u24

-8+ + u a v 1 (4.5)"U2L1 (b 2+c a P a) 20 co(b 2 +c2 1&2 X)
1 2

21 I a a a2v a 2,j2e

(s+i)U2  - a u 1 - ~ Z (4.6)
29 +C221 p 2 2 ) SX

2- 2 2
2 + j P 2 + c2+C 2 )L2 + l. -0 (4.7)

1 ). OIL, L~~I I 1 , 21L a 2 ~)

and the boundary conditions to

21Dab sin a(b +C 2 1 ) (s+i) Za 2b•ina(s+i)p!
u 2x1 0 u = $(a2+b ) 2 i(a -b 1] 20 UzWs[s(a +b )l(az -b 2)

at xI =b. Also u24L and u•e 0 -0 as (b-X,),,*
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Integrating (4.5) (4.6) we have

SDbi sin a(s+I) p, I[ + N/(b2+c 2 I2)]a 62 'b)
U2 We[s(& 2 +b 2 ) -i(a2 -b 2 ) {

- [s (b2 +c2 L2 )JO 1 1-

2

(4.8)

Gab sin a(s+1) [J + 4(b 2+c 2 l)]e 6 2 b)

u s[s(c2+b2) -b2)]

2 2 2 6 1(kl-b)

+ [aO)I-4(b+ Jh)JO

where

2 ~ 2 22 21.&la

6 2 .(b2 + c 2 L )[ + l .2 2 2iS ]

2 va 24(b +c2 P

(4.9)

2 ( 2 22 Zi+ .1a6 1 a- (b +cI& 1)[s+i+ 2 22 ]
I va a (b2 +c 21&)

and the signs of the square root of the expression for 61 and 62 are decided

by requiring that, when a is large, real and positive, 61 and 62 are both

positive. The value of I2X now follows by the direct integration of (4.7)
s

so that all properties of the boundary layer are now formally known. It is noted



-24- #374

that the assumptions on which this boundary layer theory is built are consistent

provided only that 61 and 6z do not vanish. Exceptional cases arise only If

s is purely imaginary and I s I < 3, when the assumptions break down on

certain circles I&1 = constant. Conceivably this may be serious at large times

since singularities occur in the s-plane on the Imaginary axle; on inverting
is t

we could get contributions to A of order tne a , (n > 0). However,

it Is believed that this does not happen. In a closely related problem (9)

the flow has been studied in the neighbourhood of these lines, and it has

been shown that main effect is to change the thickness of the layer from

O(V ) to O(V'f). Adapting the argument to the present problem similar

results are obtained, and it is found that, In the neighbourhood of the

singular lines, p XI a O(v ), instead of O(Jv) as elsewhere in the

boundary layer. Further, on computing the contribution from the neighbourhood

of these lines to the flow in the deep interior of the spheroid, we find it to be

O(V ) as against O( vJ) from the rest of the boundary layer.

Of particular interest is the value u j just outside the boundary

layer i.e. when (b-)XI)V1 is large, but (b- XI) is small. This Is obtained

by integrating (4.7) with respect to X I from -ec to b and using (4. 9).

Denoting the value of u U I by u4X (bp p1, 0) we have

1
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a(b 2 +c z 4 P (b, I&1, 0)

F •1 22 2
Oabi sin as+ 1) 8 {1 b + 2 L 4~i-~~ Jb*

ows~s(a2+bZ) - i(a2- bZ)J [2 j

(b2 +c21&2 ap+(2+ 2 L2 a ( 2 +212j 1
+1 +. (4.10)

6z 2 6 1J

Now let us consider the second part (V,3) of the boundary layer due to

that part of (4. 3) Independent of 0. Let the Laplace transform of with

respect to wt be . Then =b

u 3, u , u -Ga cos a(1-J. 2 ) I/w (4.11)

3X1 31&31

and by an analogous argument to that given above the equations governing the

flow in the boundary layer reduce to

a2u

su ~ ~ ~ ~ ~ ~ 8 * *P v -31(.2
su* l Zla u a v a31(

•1a 0 2 , (4.12)~u3
su3 •b~c~l~ W• b •b+c i) )l '"•

31 2 2231& 22 2) 4
(+C1) I (b + c I&)



-26- #374

a(b +c OU"- a (I +c -2) - IL- )2 t, (4.14)

Integrating (4.12) and (4.13) we have

Gaitcos -(l- I (k -b 64(k-bu3PI -'" w[

(4.15)

2aCos a(+ - 1&12 63 4u31 -" S [ + e

where

2 w 2 22 ZIl~a
63 ('2(b2+c 2R)(s"- 2 z za

"va (b +c ,1

(4.16)

2 =W 2 22 t+21Ia
64 -i (b& +c i (s b +c

,a(

and 63 and 64 are real and positive when s is real, positive and large.

The consistency of this solution is subject to the same qualifications as

(4. 10). Of particular interest here too is the value of u * just outside

the boundary layer, and denoting it by u3 *(b, pl 0) we have
1k
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2+ Co- s O a a 2C 2 2½ 2 1 1 1
a(b 2+c 2li 1& ~ 2 - f- [(b (c 1) -1I) (T -E4)] (4.17)

1 1 w ý 3 4
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5. THE TERTIARY INVISCID FLOW

The boundary layer solution obtained in §4 shows that there must be

a normal velocity at the edge of the layer (i. e. as k I -. b- on the inviscid

scale) of order vi and given by the sum of (4.10) and (4.17). In turn

this must induce a tertiary inviscid flow throughout the interior of the spheroid,

i. e. a flow governed by (2. 14) and (2. 15) excluding the forcing terms, and

satisfying (2.19) with a right hand side effectively equal to the sum of (4. 10)

and (4.17) (instead of being zero). Since (4.10) is dependent on 0 while

(4.17) is not, it is convenient to treat their contributions separately and in

this section we shall consider the consequences of (4. 10). In §6 below

we shall consider the consequences of (4.17).

Denoting the corresponding velocity in the spheroid by V4 we have,

from (2.17), that P4 can be expressed in terms of a scalar V4 which

satisfies (2.18), the forcing term in (2.17) being again set equal to zero.

Hence, after stretching the z coordinate, V 4 satisfies Laplace's equation

and the appropriate solution can be formally written down. Let

2 2)*22*2 -4) (4+4 )½ST 4 • 4x
((s+i)' (5.1)

where

2 2 1 2 2
V 4 =a + 'c (s+i) (5.2)
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In torms of 14 and X4 the spheroid is given by

1

x4 m(l + i)b (5.3)

and on the spheroid IL4 a1 A I z& . The most general acceptable form for V4

is

v-• 4 • 0 ,• -Y ( + Y• 4 )€ ,€, Z I nY (0)(.4)
n=l

the P being Legendre polynomials and the A constants to be found.n n

Further, the boundary condition associated with (4. 10), viz.

2 2r z r+ z• U 4 r+ ;•U4 z = (-4 -)u 4k(b, &,O ,

a 2 rb a z b 4 X1

becomes, in terms of V4

a 'V4 Zib - 2 2
2 Ox + 2 V 4 -(b +cIL)2 uc4X 15.5)4 a[(s+i) + 4

at X 4 = (s+i)b/Z. It follows from (4.10) that u 4X Is an odd function
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of j& and behaves like (1- I& ) near IL 1 . Consequently n is even

in ( 5.4), and the various An are determined from the equation

2 2*2 )..n Ziblx 4 + y 4  iX.4+ . P(-) +{n 44 a[(s+i) +4] n Y4 n

with )x4 =(s+i)b/Z and

+ 1 B f + (b 2+ c 2 1&)2 d 1 . (5.7)
Zn+l n -I 4 )' L

From this point on, the determination of V4 is in principle straight-

forward but involves the evaluation of complicated inversion and other integrals.

However, since v is assumed to be small the effect of the tertiary flow may

be neglected unless the An have poles, qua functions of s, in the half

plane 6e (s) > 0 , or sufficiently strong singularities on the imaginary axis

of s . Our purpose in the rest of this section is to give arguments to exclude

such possibilities.

First we show that An has no singularities in the half plane

(A (s) > 0 . A singularity can arise if either the coefficient of A inn

(5. 6) vanishes or if B is singular, or if (2. 18) breaks down. Taking
n

these possibilities in order, the coefficient of A vanishes if
n
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(s - i)bPn'(4) + 2iY4 n(n+l)Pn(") -0, (5.8)n

using the properties of Legendre polynomials and writing

i(s +i)b 2(5.9)

[4a2 + c (s+i)t]

Writing s = i (5.8) reduces to

F(o-) - (l-a*)P'(4) + (l+a)n(n+l)P () = 0 (5.10)n n

where

(l+r)b (5.11)

[4aZ _ c2 (1+ ) ]

we shall now show that the roots of (5. 10) occur at real values of .

We observe that physically this result is to be expected because it means

that the periods of free oscillation of the fluid in the spheroidal envelope

are real. In order to prove this result, we note that (5. 10) is effectively

a polynomial of degree n + 1 in r and hence it is enough to prove

that F(a) has n + I zeros on the real axis of ar . One such zero is

clearly at -r =-1, where =0 . Further, between (r = -1 and W = +1,

where 4, = I , P has n/2 zeros and consequently, from the interlacingn
1

property of the zeros of P and PI F(ar) has n - 1 zeros between
n fn

the first positive zero of P n, qua function of 4,, and a- = I . A similar
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remark applies to -3 (a < -1 . Again if n/2 is even, F(r) > 0 if

r+ I is small and positive, and is negative at the first zero of P forn

which o > -1. Hence F(a-) vanishes in this range too. A similar argument

applies if n/2 is odd. Counting up we see that there are exactly n + 1

zeros of F(ar) in -3 < w < 1 all simple, and leading to finite oscillations

of the fluid except when they coincide with poles of B
n

Now consider the singularities of B There are two simple poles
n

at s 0 and at s =ik, from (3.8) and (4.10). In addition 61 and 62

vanish within the range -3i < s < i for any acceptable value of p. . In the

evaluation of B we need the weighted integral of ucs e
n ; consequently

the associated singularities of B only occur at s = -31 and s = i , and
n

will be considered at the same time as the singularities of the governing

equation (2. 18). The poles of B at s =0 and s =ik can lead ton

motions which are apparently large as t - oo if one of the zeros of (5.8)

occurs at the same value of s. The second possibility (s = ik) is unlikely

if n # 2 since it implies that two free periods of oscillation of the fluid are

equal but we have not been able to rule this out. The first possibility (s = 0)

is real, and there seems little doubt that for any n we can choose a value of

a/b to satisfy (5.8) by s =0; for example, if n =4 and

6a = ('39 + \115)b,

the left-hand side of (5. 8) vanishes at s = 0 . Using the argument above

for s 1 ik, (k (a 2-b 2)/(a 2+b 2), we can say that if a = b it is most
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unlikely that (5.8) is satisfied by s =0 for ni 2. In the case of

particular interest therefore, when a f b, we conclude that the possibility

of satisfying (5. 8) at s = 0 is not likely to be serious except if n = 2.

Let us consider the case n = 2 in some detail. Here A2 has a

double pole at s = 1k because the coefficient of A2 vanishes and because

B92 has a simple pole from (4.10). Using the formula for A in (3. 5)

2 4 f (l.-)R (b2+c 1L)* , (5.1 2)
1 a1

4b 2 222 22 222

(5. 13)

The corresponding value of A2 is now easily worked out from (5. 6) and,

reverting to the coordinates (r, 0, z), the corresponding contribution to

V4 is

3rz(s2 +I)B 2

a2 2 5. 14)
a2(s-i)+b b(s+i)

Let the coefficient of A in (5.13) be x . The implication of (5. 4) is

that the secondary motion described by (3.3) and (3.5) gives rise to a

complicated tertiary motion of which the second harmonic is of the same

form as (3. 3) but with a double pole at s = ik. Although formally this

means that the tertiary flow increases without limit as t - 90 it is to be
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expected that the double pole arise through an error of order X in the

position of the simple pole of A in (3. 5). To see this we note that

the contribution from (5.14) to the tertiary flow is ultimately dominant

and it gives rise via the boundary layer to a similar form to (5. 14) in

the quaternary flow but now with a triple pole at s = ik , and so on.

Adding up all these contributions to V which are proportional to rz,

qua functions of r and z, their total is

00 2
Ar: Z [ 2 ( 1 l 2

m=O a (s-i) +b (s+i)

Z0a 2i sin a(s+l2rz . (5.15)
Ws[a 2s -i) + b (s+i) - 3(s +l)x]

Thus the effect of the boundary layer is to shift the pole s - ik to

2) X2 23(1 -k )xa -b
!ik+ +2. k -

a2 + b2 a2 + b2

the neglected terms being O( vi) and most probably O(•) from (9).

Of particular interest is the position of the pole when

2 21 >> b (5.16)

a +b Wai
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the second condition being fundamental to the present theory. So far as X

Is concerned It is sufficient to set a = b when

X2,Sa f 1 (1+ IL 2 (l -2&) (5.17)
41 Z

where

and since a ow 0

a v

6z ( 5.13)

- e - 1 rei/4 Z(4L ,1) if I&>.

It follows that

512 i

X (- (0O. 195 + 1. 976 i)

whence the pole is moved to
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s .L a" b2 (3.720 - 0.3651) + (5.19)(a2 + b21 20a 2

and, since it is in the half plane t(s) < 0, the associated contribution

to the flow dies out as t .eo. A similar result can be expected for all

b/a.

The last cases to be discussed are the behaviour of the solution in

the neighbourhood of s , i and -31, where the differential equation

2.18) takes on a singular form. Although 62 vanishes at j&a = (b 2+c2 I

when a al it follows from (4.10) and (5.7) that B is bounded as

s - I for all n. Hence, substituting into (5. 6) and noting that

X=4 ly4 on 80 If a =1, it follows that

An =0(s-i)', (5. 20)

th
near s = i. Further the n harmonic in (5.4) can be written as

2 + 4]I(s+i)rzAG l (s +i) 2 + 4]r2, 22 (5.21)

where Gn/ 2 (a, P) is a homogeneous polynomial of degree n/2 in a and

with constant coefficients. Hence the contribution to the tertiary flow is
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O(s - i) as s - I, and its inverse with respect to s tends to zero as

t - co. A similar remark applies to the neighbourhood of s = -31. In the

neighbourhood of s = -I, B is O(s+i) from (4.10), and then

coefficient of A in (5.6) is 0(1) since n is even. Consequentlyn
3

(5. 21) is 0(6s ÷ i) near 9 = -i and its contribution to the tertiary flow

tends to zero as t - .

Summarizing we can expect that, of all the components of the

secondary flow which depend on 0, only the steady component will remain

as t -. cc ,the boundary layer serving to damp out the oscillatory terms.



-38- #374

6. THE TERTIARY INVISCID FLOW (ii)

In this section we consider the inviscid flow engendered by (4.17)

which is independent of 0. We assume that the associated inviscid flow

PS is also independent of 0 whence, on taking the Laplace transform with

respect to wt, the governing equations reduce to

Ov*

sur 2u =-- , su *+Zu 0-,
Sr 50 Or 50 Sr

(6.1)

*' 8V5  a * a *

s - - 5 a (ru) + -(ru) =0

those equations also follow from (2. 12) on assuming that X5 is independent

of 0 and neglecting the initial and forcing terms. Further, on So

r Z2 2 *r • z * rz z ] **

Zur + u = - + z ] u (b, )(62a 5 b 2 5 z a b 4 S

from (4.17). In terms of V5 ,

USr 2 r ' 5z s 5 (6.3)
s +4

so that
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sV2 azrV +(s2+4) -2VS
r -i- 0 z (6.4)

Introduce new coordinates 5L. such that

r f 2ik( 2 + ¥ ) 01-• ) , Z = 2 , 16.s)
2 +4 5S

2 1 22 1  a
where y 5 = a + s c , S0 is given by X b and, on So

The boundary conditions now reduce to

8V 5  1 2 22* (.6
-- =-I(bz + cZ&) u* 6.6)- = -; (b 'cP )
Tx a 5k'

on S . The most general appropriate solution for V in S is0 5 0

V= npn --n y)P n(LS) ' (6.7)
n=Onn y 5

where Cn are constants and, since 1L5 is an even function of 1L,

n also must be even.. Hence
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2 ib5  +1 a 2 2)2
(Zn~~~l) C~~~P~(~ 2y f, P( [(b +c IL ~ -fda 682+1)nn 5 -1O I 3 64

The main interest here centers on the behaviour of the solution at large

times, contributions to which arise from three sources. To begin with C n

will develop a simple pole whenever P' vanishes unless s = 0 : the
n

corresponding motion, according to (6. 7), is a feeble oscillation and

one can expect to show, using a similar argument to that which led to

(5. 19), that viscosity damps it out ultimately. Further the differential

equation is singular at s = -Zi where ibs/2Y - 1 . Since P' (*') 0 0,5 n

the leading terms from this cause must become zero, as t -. oo. Finally,

one must consider the case s = 0 . When s is very small

(2n+1)co a 3 +1• (b12+c2 1A 2
o= - dfn. 1 - I& ) Pf (I) t 11 (6.9)

n n(n + 1) bs 2Pn (0) wa -1 ( - Zipa)

so that, on inverting (6.7), V contains a term which is proportional to

t when t is large. The implication is that the boundary layer exerts a

decisive influence on the inviscid flow outside in this instance.

The reason for the difference between the solution in §5 near

s = -i and the solution in §6 near s = 0, although both governing

equations are similar and singular at these points is two-fold. First

-1(4. 10) contains a factor (s + ) while (4. 17) contains a factor s
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so that the behaviour of V5 near s a 0 is bound to be more singular
5

than the behaviour of V4 near s a -i. There is, however, a second

deeper reason. Near a * 0 the governing equation (6.1) reduces to

U40O, 8-T- u0 (6.10)

which means that u * is independent of z and therefore must be

an even function of 1&. Consequently V* is an odd function of

1A but the boundary condition (6. 2) requires it to be an even

function. This patent contradiction means that a serious breakdown

in the solution must occur as t -w ac. From studies of the steady state (e. g.

Proudman (8)) we know that the boundary layer in such a case exerts a

decisive influence on the flow outside, adjusting it until the conditon that

u SX is an odd function of 1& is satisfied, which is only possible if

u S -- 0 as t - ,o. Hence the initial angular velocity ue = Or cos a

is also damped out by the boundary layer.

On the other hand near a = -i, while the governing equations

(2. 17) and (2. 18) also reduce in part to

8u A
-- 0 ,(6.11)

so that u4 * is an odd function of I&, this condition is actually satisfied

!4
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by (4. 10) so that no corresponding difficulties occur.
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